Collaborative Diagnosis of Over-Subscribed Temporal Plans

نویسندگان

  • Peng Yu
  • Brian C. Williams
  • Leslie P. Kaelbling
  • Paulo C. Lozano
چکیده

Over-subscription, that is, being assigned too many tasks or requirements that are too demanding, is commonly encountered in temporal planning problems. As human beings, we often want to do more than we can, ask for things that may not be available, while underestimating how long it takes to perform each task. It is often difficult for us to detect the causes of failure in such situations and then find resolutions that are effective. We can greatly benefit from tools that assist us by looking out for these plan failures, by identifying their root causes, and by proposing preferred resolutions to these failures that lead to feasible plans. In recent literature, several approaches have been developed to resolve such oversubscribed problems, which are often framed as over-constrained scheduling, configuration design or optimal planning problems. Most of them take an all-or-nothing approach, in which over-subscription is resolved through suspending constraints or dropping goals. While helpful, in real-world scenarios, we often want to preserve our plan goals as much possible. As human beings, we know that slightly weakening the requirements of a travel plan, or replacing one of its destinations with an alternative one is often sufficient to resolve an over-subscription problem, no matter if the requirement being weakened is the duration of a deep-sea survey being planned for, or the restaurant cuisine for a dinner date. The goal of this thesis is to develop domain independent relaxation algorithms that perform this type of slight weakening of constraints, which we will formalize as continuous relaxation, and to embody them in a computational aid, Uhura, that performs tasks akin to an experienced travel agent or ocean scientists. In over-subscribed situations, Uhura helps us diagnose the causes of failure, suggests alternative plans, and collaborates with us in order to resolve conflicting requirements in the most preferred way. Most importantly, the algorithms underlying Uhura supports the weakening, instead of suspending, of constraints and variable domains in a temporally flexible plan. The contribution of this thesis is two-fold. First, we developed an algorithmic framework, called Best-first Conflict-Directed Relaxation (BCDR), for performing plan relaxation. Second, we use the BCDR framework to perform relaxation for sev-

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generating Plans in Concurrent, Probabilistic, Over-Subscribed Domains

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

متن کامل

Learning Temporal Plans from Observation of Human Collaborative Behavior

The objective of our research effort is to enable robots to engage in complex collaborative tasks with humanrobot interaction. To function as a reliable assistant or teammate, the robot must be able to adapt to the actions of its human partner and respond to temporal variations in its own and its partner’s actions. Dynamic plan execution algorithms provide a fast and robust method of executing ...

متن کامل

Resolving Over-subscribed Temporal Planning Problems through Fluent Human-Robot Collaboration

There has been a rapid growth in the deployment of robots in the past decade. From aircraft assembly to home cleaning, robots have been working for us in many domains of our lives. However, there is one important barrier that limits their performance: these autonomous systems become very brittle when they fail to achieve what they were asked to do. No matter it is a sophisticated manufacturing ...

متن کامل

Simulation of rainfall temporal distribution pattern using WRF Model (case study of Parsian dam basin)

During the rainfall, the intensity of precipitation varies. Changes in the amount of precipitation during an event of rainfall are effective in the resulting of flood and its intensity. Knowledge of how rainfall changes over time during rainfall is determined by temporal distribution pattern of rainfall. For this purpose, availability of short-term time scales rainfalls data are important that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017